

REACHING NET-ZERO: SCENARIOS AND REGULATION TO RETHINK SECTOR COUPLING

MICHAEL G POLLITT AND CHI KONG CHYONG (CERRE & UNIVERSITY OF CAMBRIDGE)

16 MARCH 2021 | 09.30-12.30 CET

REACHING NET-ZERO: SCENARIOS AND REGULATION TO RETHINK SECTOR COUPLING

SCOPE AND SCENARIOS

OUTLINE OF THE PRESENTATION

Scope and goals of the study

State-of-the-art energy system model for net zero scenario and policy analysis

Main results: Net Zero (NZ) baseline scenario & variations

Conclusions

Debate (Q&As)

SCOPE AND GOAL(S) OF OUR STUDY

RESEARCH QUESTIONS

- 1. Sources of flexibility of gas and electricity in deep decarbonisation
- 2. Complementary dimensions and trends of different energy sources and vectors

0

OBJECTIVES

- 1. Re-model relevant long-term scenarios
- 2. Propose regulation to build the first blocks of sector coupling

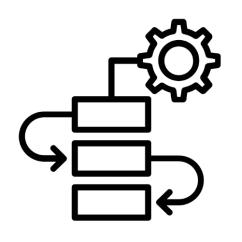
WHAT IS SECTOR COUPLING?

SECTOR COUPLING, or energy system integration, is commonly understood as integrating the energy consuming sectors (such as buildings, transport, and industry) and optimising them with the energy supply sector.

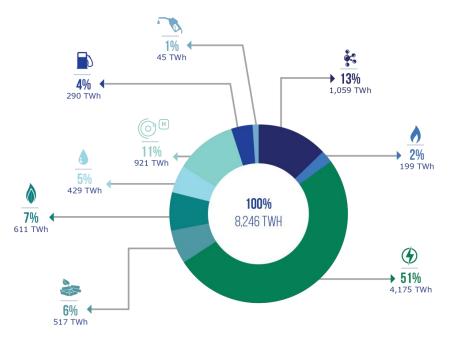
WHAT IS SECTOR COUPLING?

SECTOR COUPLING, or energy system integration, is commonly understood as integrating the energy consuming sectors (such as buildings, transport, and ndustry), and optimising them with the energy supply sector.

Our core research focuses on **coupling between** electricity and gas supply systems, taking into account explicitly their joint interactions with the energy consuming sectors and key end-use technologies.


WHAT IS SECTOR COUPLING?

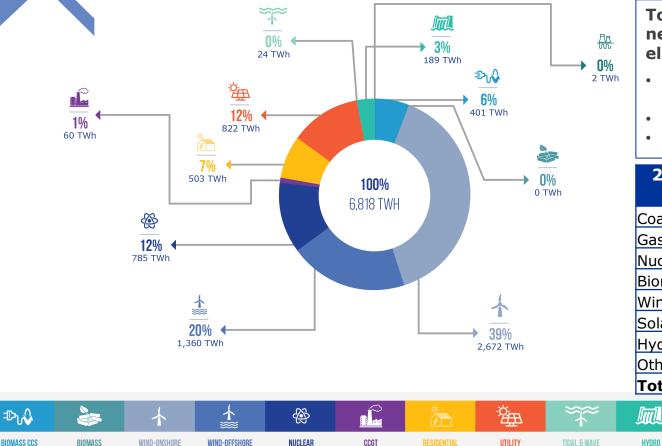
- We consider sector coupling **technologies**
 - **P2X**
 - Hybrid heat pumps
- We consider **sources of flexibility**
 - \circ Networks
 - System integration technologies
 - o Storage


STATE-OF-THE-ART ENERGY SYSTEM OPTIMISATION MODEL

- **Pan-European model:** models DE, IT, NL, BE, FR, UK, IE, PL & the rest is represented as East, Central and South Europe regions;
- It models **existing energy supply,** including **renewables** and **new energy** sources such as **synfuels** (e-gas & e-liquid), H₂, bio-methane;
- **On the demand side,** it includes energy demand in buildings, road transport, industry, and other transport sectors;
- Model: 92 million constraints, 73,5 million variables and 294 million data points...
- It covers hourly system operation and investment in infrastructure:
 - $\circ~$ Power generation; heat technologies in buildings; road transport technologies; H_2 production technologies; E-gas & E-liquids;
 - \circ Storage for CH₄, CO₂, H₂, electricity, heat;
 - Transmission and distribution networks and cross border interconnections and trade.

THE ROLE OF ELECTRICITY & LOW-CARBON FUELS IN NZ

- Total final consumption in 2050: 8,246 TWh
- Electricity plays a central role (51%)
- Other low-carbon energy sources are not insignificant (36%)


2018 Final Consumption, TWh (% of total)			
Oil and petroleum products	4,573 (37%)		
Natural gas	2,854 (23%)		
Renewable energies	1,217 (10%)		
Electricity	2,812 (23%)		
Total	12,347(100%)		

THE ROLE OF ELECTRICITY IN NZ – generation mix

SOLAR PV

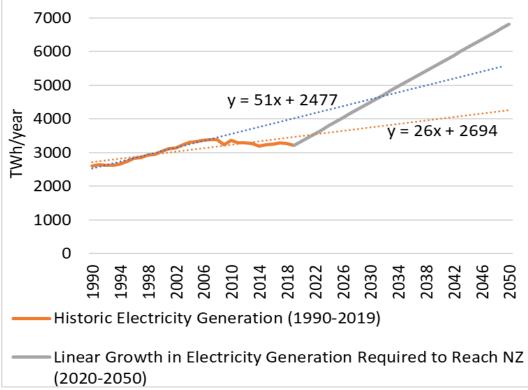
SOLAR PV

፡**ይ**ካ 🏠

To deliver NZ in 2050, we need a truly zero carbon electricity system!

- RES shares is 81% of total generation
- Nuclear: 12%

<u>77</u>

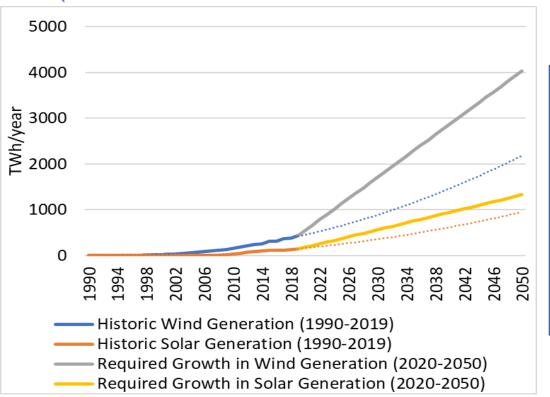

GEOTHERMAL

Biomass CCS: 6%

2018 Generation mix, TWh (% of total)			
Coal	621 (20%)		
Gas	513 (16%)		
Nuclear	860 (27%)		
Biomass	100 (3%)		
Wind	389 (12%)		
Solar	111 (4%)		
Hydro	373 (12%)		
Other	141 (5%)		
Total 3,135			

11

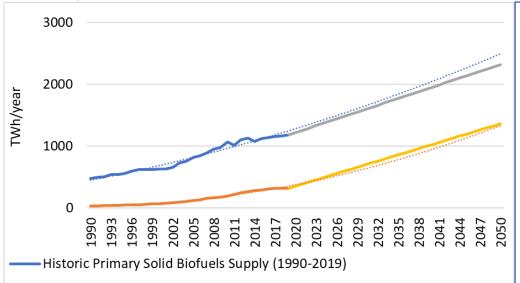
THE ROLE OF ELECTRICITY IN NZ – supply expansion



Historic (30 years: 1990-2019) Expansion of Electricity Generation in EU and Required Growth to Meet the NZ Target by 2050

- Electricity supply needs 88% increase relative to 2018 level
- Either 5 times the historic growth rate in supply (taking 1990-2018 as a whole) or 2 times the expansion rate before 2008
- Challenging our NZ requires expansion of certain technologies!

THE ROLE OF ELECTRICITY IN NZ – wind and solar


Electricity Generation from Wind and Solar: Historic Trend and the Required Pathways to reach the NZ target by 2050

Our NZ scenario > 4,000 TWh of wind gen. by 2050

٠

- Double our historic efforts in getting wind onto the energy system.
- Solar generation: based on historic trend we might only miss about 300 TWh of generation

THE ROLE OF BIOENERGY & DERIVATIVES IN NZ

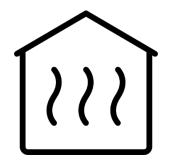
Historic Biogases and Renewable Municipal Waste Supply (1990-2019)

– Required Growth in Primary Solid Biofuels Supply (2020-2050)

 Required Growth in Biogases and Renewable Municipal Waste Supply for Biomethane Production (2020-2050)

Solid Biofuels and Biogas Supply: Historic Trend and the Required Pathways to reach the NZ target by 2050

Bioenergy supply requirement in our NZ 2050 does not seem to be a major constraint; BUT two challenges need to be addressed, if we are serious about reaching NZ:


1. Scaling up of biomethane production (from biogas) to the required level might be a challenge (in our NZ 2050 biomethane

required: 1,150 TWh vs 2018: 23 TWh);

2. Scaling up of a carbon capture technology to the required level will be a challenge, given limited success in demonstration of CCS at large-scale so far.

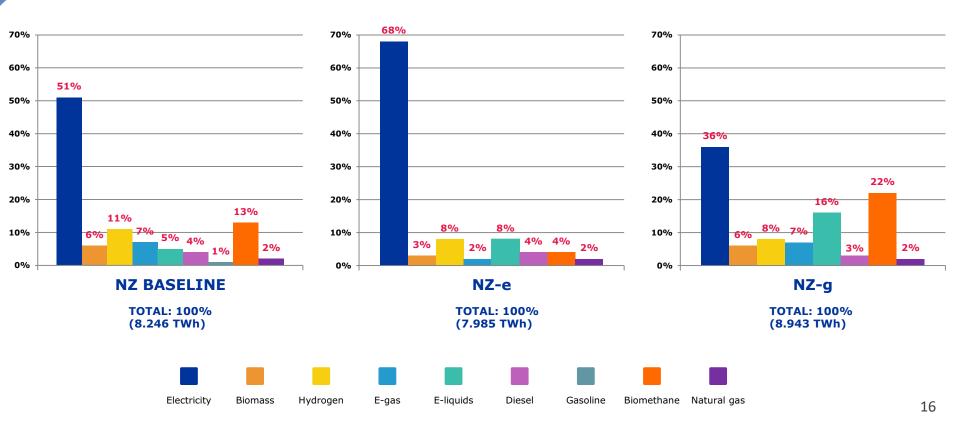
FINAL CONSUMPTION BY SECTORS IN NZ - buildings

- For space and water heating we see uptake of air source heat pump (ASHP) and hybrid heat pump (HHP) with electricity fuel taking 65% of thermal energy services demand
- HHP-gas serves as flexibility and runs at peak hours
- When HHP-gas is running it consumes carbon-neutral bio-methane, e-gas with some fossil gas as well

FINAL CONSUMPTION BY SECTORS IN NZ – road transport

cerre

- EV Cars constitute 80% of total passenger cars stock
- Diesel cars consumes mostly carbon neutral e-liquids
- Public road transport is mostly electrified (84%)

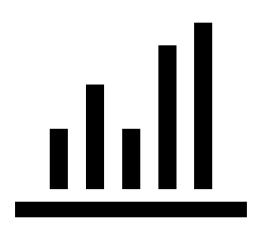


 HGV is dominated by H2-fueled (64%), gas-mobility (28%) and ca. 8% of the truck fleet is electrified

COMPARISON OF NET ZERO BASELINE VS NZ-E & NZ-G

cerre

The role of electricity & low-carbon fuels in final consumption



17

cerre

MAIN FINDINGS OF BASELINE AND ITS VARIATIONS

- **1.** Central role of electricity in all 4 scenarios
 - Share of electricity in final consumption could reach 68% in NZ-e...
- 2. Central role of CCUS as we move from 90% GHG reduction target to NZ
 - removing the residual 10% emissions (i.e., net zero target) requires a four-fold increase in permanent CO_2 sequestration...
- Bio-methane supports deep decarbonisation in both 90% and NZ scenarios, while H₂ plays a prominent role when we need to achieve the net zero target
- 4. Residual GHG emissions are focused in hard-to-abate sectors like transport
- Power generation sector is largely decarbonised even in 90% GHG reduction scenario

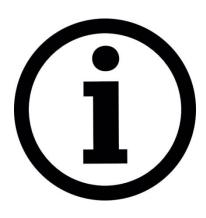
FLEXIBILITY REQUIREMENTS ARE CRUCIAL

- Energy system flexibility need 1. Nation
 Crown of
 Energy system flexibility:
- 1. Energy system should be **very well connected** to deliver spatial flexibility needed. Investments needed in:
 - 1. National transmission and distribution grids
 - 2. Cross-border interconnections to support rapid roll-out of RES from local and remote locations
 - 2. Energy system should **build out all forms of temporal flexibility**:
 - 1. Inter-seasonal flexibility:
 - Traditional seasonal gas (CH₄) storage
 - New forms of seasonal storage green $\rm H_2$ production and storage
 - 2. Intra-day flexibility:
 - Hydro-based electrical storage and generation; V2G from EVs and battery storage
 - Pressurized H_2 tanks and liquid H_2 storage
 - Hybrid heat pumps & within day CH_4 pipeline flexibility

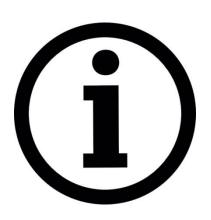
RECAPING: KEY OUTCOMES OF THE MODELLING

- **1.** Key role of electricity supply sector and electricity-based enduse technologies (e.g., EVs and heat pumps) to deliver NZ...
- **2. BUT** the role of bio-methane, hydrogen, synthetic e-fuels and bioenergy with CCUS is also important.
- 3. All modelling scenarios confirm the need to increase both **traditional and new forms of flexibility** to support deep decarbonisation.
- **4. Overall net zero remains an extremely technologically challenging** policy goal, involving multiple new technologies at scale in a 30-year time frame.
- 5. The failure to scale up any key tech such as RES-E, biomethane, hydrogen or CCS will block the path to NZ, necessitating a currently unforeseen technological breakthrough in the next 30 years.




REACHING NET-ZERO: SCENARIOS AND REGULATION TO RETHINK SECTOR COUPLING

ASSESSING A NEW REGULATORY FRAMEWORK



GENERAL FINDINGS (i)

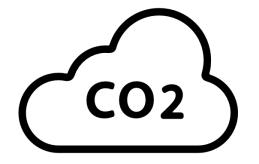
- **RES-E is essential** and the roll out of wind in particular...
- A substantial increase of electricity trading is envisaged
- Four sets of massively scaled up activities: hydrogen; its conversion to synthetic methane; synthetic liquid fuel from electricity; use of carbon capture
- **Need to increase bio-methane** and replacement of natural gas with synthetic methane
- Need to create a separate hydrogen network
- Investments in electrolysis, e-liquids and e-gases and CCS

GENERAL FINDINGS (ii)

- NZ scenarios vs 90% differ primarily in transport and industry
- This emphasises the key role of hydrogen and bio-methane in each of our NZ scenarios
- In our central NZ scenario, the methane network is
 50% smaller than today
- Fossil fuel prices do continue to make potentially significant differences in our model. Low methane prices → `blue' hydrogen. High methane prices + low costs of wind and solar → `green' hydrogen

BACKGROUND TO POLICY RECOMMENDATIONS (i)

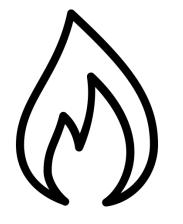
- The nature of today's energy system has been shaped by the relative availability and price of fossil fuels...
- The successful scale-up of multiple technologies supported by appropriate policies will be critical...
- The evolution of the relative costs of wind and solar energy, bio-methane, hydrogen related technology and others remain subject to the influence of R&D and experimentation and to policy support.
- Some policy recommendations must reflect the reality of where we are now and hence likely to be in the next few years.


BACKGROUND TO POLICY RECOMMENDATIONS (ii)

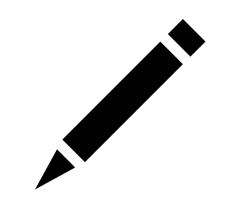
- Massive scaling up of currently nascent technologies e.g. hydrogen, CCS, bio-methane - are part of our three NZ scenarios
- Our detailed modelling assumes that there are separate methane and hydrogen networks in 2050
- We emphasise that we are only modelling net zero in 2050 and not modelling the equally (or indeed more) difficult pathway to net zero

POLICY ON CARBON, ELECTRICITY AND GAS PRICING

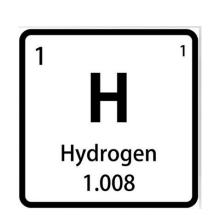
- Harmonisation of taxes/charges
- Question of how the EU ETS should be extended
- Energy efficiency is critical
- Single market in methane needed
- Value of flexibility should reflected
- Huge investment in RES-E still required



KEY ROLE OF ELECTRICITY IN NZ


- Support rapid roll out of **RES-E is critical** to NZ
- Heavy electrification needs supportive policy environment towards rapid uptake of electric vehicles
- Electricity transmission and distribution networks
 need to be strengthened
- Substantial increase in the cross-border trading
 of electricity

THE ORGANISATION OF THE GAS SYSTEM


- Coordination between gas and electricity DSO and TSO
- Possible joint testing of P2G assets
- Stronger cooperation between gas and electricity system operators
- Gas network pricing very important
- Separate methane and hydrogen networks
- Possible alternative sources of hydrogen compete
- Impact of fixed cost recovery severe

ROLE OF DEFINITIONS

- The definition of green, blue, purple and grey gas is important
- European Commission to clearly define these in colourful debate
- Regulation for methane and H2 storage: load or source of supply?

PROMOTING HYDROGEN

- Development of a hydrogen network needed
- In our NZ scenarios:
 - Electricity replaces liquid fossil fuels in light duty transport
 - H2 replaces liquid fossil fuels in heavy duty transport
- Allow electricity and gas distribution and transmission companies to build, own and operate such assets.
- Role of certificates of origin of green gases

DEVELOPMENTS IN SPECIFIC COUNTRIES MATTER

- A small number of European states are investing in hydrogen
- Technology emphasis differs
- EU has options to use imports to support decarbonisation
- Watch closely developments in
 Australia, Nigeria and Japan

ROLE OF EU IN NEAR TERM

- **EU plan** on sector coupling is necessary
- Consideration of **RES-G targets** to mirror RES-E
- Zero carbon transport solutions important drivers of sector coupling
- Expansion of cross-border transmission infrastructure in electricity
- EU needs to be careful to prevent greenwashing and growth of grey hydrogen

NEXT STEPS

- MS variation in power-to-gas and powerto-H2 policy
- National TSOs and DSOs in gas encouraged to participate in P2G and power-to-H2
- Revision of Energy Taxation Directive and the EU ETS
- COVID-19 recovery package should facilitate NZ

REACHING NET-ZERO: SCENARIOS AND REGULATION TO RETHINK SECTOR COUPLING

DEFINITIONS (i)

- **Blue hydrogen:** hydrogen produced from fossil natural gas with CCS via steam reformation technologies (e.g., steam methane reformation, SMR, and autothermal reforming, ATR, technologies); carbon content of produced H2 is 0; note that production of blue H2 with CCS still emits CO2, depending on assumed capture rate of SMR or ATR;
- **Green hydrogen or power-to-H2:** hydrogen produced from renewable electricity via water electrolysis; carbon content of H2 is 0;
- **E-gas:** synthetic methane produced by combining H2 with CO2 from bioenergy hence carbon neutral;
- Power-to-gas (PtG): a group of technologies to produce carbon neutral CH4 (e-gas) using hydrogen and CO2 from biomass generation or biogas upgrading to biomethane;

DEFINITIONS (ii)

- **E-liquids:** synthetic diesel produced by combining H2 with CO2 from bioenergy hence carbon neutral;
- Power-to-liquid (PtL): a group of technologies to produce carbon neutral synthetic diesel (e-liquids) using hydrogen and CO2 from biomass generation or biogas upgrading to biomethane;
- **P2X**: refers to either PtG or PtL as understood above;
- Biomethane or renewable gas: upgrading of biogas to the specification -96% CH4 and 3% CO2 - allowing injection into existing gas grids. Biomethane is carbon neutral (i.e., its carbon content is 0), just like biomass for power generation. In the process of upgrading biogas, the CO2 in the biogas is captured and either stored (negative emissions) or used to produce carbon neutral PtG and PtL.

ENERGY SYSTEM MODELLING FRAMEWORK FOR NZ POLICY ANALYSES

- **Primary supply scope:** coal lignite & bituminous, uranium, biomass, natural gas, biomethane, e-gas, H2, Electricity, e-liquids
- VRE & RES scope: Hydro, Wind, Solar, Tidal
- **Demand scope:** final energy consumption in (i) buildings (RSD, COM, AGR), (ii) road transport, (iii) industry, (iv) aviation, rail and inland navigation
- **Geographical scope:** EU27+UK+Norway+CH+North Sea&North Africa (14 regions in total)
- It covers hourly dispatch and investment in capacity
- Endogenous choice of key end-use technologies:
 - Buildings (e.g., space and water heating)
 - Road transport (EVs, FCEVs etc.)
- Final consumption and GHG emissions calibrated to EC Scenarios for:
 - o Industry
 - Aviation, rail and inland navigation

GHG EMISSIONS BALANCE IN OUR NZ

හු

TABLE 22

GHG EMISSIONS BALANCE IN THE NZ AND 90% SCENARIOS, MTCO2E

		NET ZERO	90% SCENARIO
[1]	Stock Change	-406,2	-100,3
[1.1]	Underground storage: non neutral emissions	-153,5	-79,6
[1.2]	Underground storage: negative emissions	-252,7	-20,7
[2]	Transformation	612,0	457,4
[2.1]	Gas-fired electricity generation	19.44	21.76
[2.2]	Hydrogen production from natural gas CCS	144.75	83.77
[2.3]	Bioenergy electricity generation	0	15.44
[2.4]	Bioenergy electricity generation CCS	447.84	336.44
[3]	CO ₂ utilization	-229,4	-276,3
[3.1]	Synthetic methane production	-121.76	-146.01
[3.2]	Synthetic liquids production	-107.70	-130.30
[4]	Final Consumption	510,9	822,1
[4.1]	Buildings	173.5	171.1
[4.2]	Industry	109.8	175,6
[4.3]	Transport Cars	79,8	76,2
[4.4]	Transport Public	0.0	0.0
[4.5]	Transport HGV	69.3	255.8
[4.6]	Transport Other	78,5	143,5
[5]	CO_2 neutral emissions	-518,0	-427,2
[6]	LULUCF CO ₂ emissions	-306,6	-240,5
[7]	Non CO ₂ GHG emissions	337,4	337.4
[8]	TOTAL 2050 (this research)	0	572,7
[9]	TOTAL 2050 (EC LTS)	26,1	620,1
[10]	TOTAL 1990*	5,4	08,8

Our Net Zero baseline results:

Total carbon captured: 636 mn tCO2e; of which:

- From biomass: 447.8 mn tCO2e
- From production of blue H2: 144.7 mn tCO2e
- From direct air capture: 43.5 mn tCO2

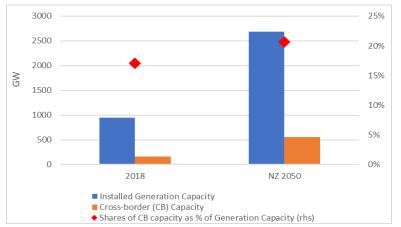
Total carbon used: 636 mn tCO2e; of which:

- Geological storage: 406.2 mn tCO2e (of which negative emissions: 252.7 mn tCO2e)
- Synthetic fuels: 229.4 mn tCO2

Table 22: GHG emissions balance in the NZ and 90% Scenarios, mtCO2e

SOURCES OF ENERGY SYSTEM FLEXIBILITY

We conceptualize this into three sources/types:

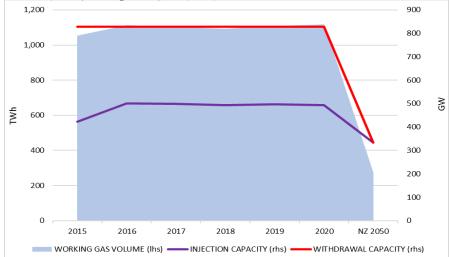

- **1. Spatial flexibility:** moving energy across space to smooth out hourly fluctuations in VRE production in different locations
- **2. Seasonal (temporal) flexibility**: moving energy between time periods (summer vs winter) to meet varying energy demand (heat load)
- **3. Intraday (temporal) flexibility:** moving energy within a day to smooth out fluctuations in demand and supply in each day

SPACIAL FLEXIBILITY: CROSS-BORDER TRADE IN NZ

•

		Imports	Exports	Final Consumption	Shares of Trade in Final Consumption
Electricity	2018	394	366	2784	27%
NZ 20		1168	1168	4175	56%
CH4	2018	5016	954	5327	112%
	NZ 2050	1190	283	1869	79%
Hydrogen	NZ2050	25	25	921	5%

Electricity, CH₄ and H₂ cross-border trade: 2018 vs NZ 2050


- As the role of electricity becomes central, so is cross border trade: total **trade in electricity increases** by a **factor of 3** (relative to 2018)
- the proportion of such capacity is quite in line with 2018. The **share of cross-border capacity** in total installed generation increases from **17% (2018) to 21% in NZ 2050**
- We can see that the **total trade in CH4 reduces by a factor of 4**
- role of cross-border in H2 might be limited in our NZ 2050

Electricity Cross-border Interconnection and Generation Capacity for EU+UK: 2018 vs NZ 2050

TEMPORAL FLEXIBILITY REQUIREMENTS IN NZ – seasonal storage

	Electricity	H ₂	CH₄
Volume, GWh	461	8,306	272,735
Power, GW	99	671	334
Average storage system duration, hours	5	12	816

Electricity, CH_4 and H_2 Storage Capacity in NZ 2050

- Inter-seasonal flexibility in the NZ scenario is provided by CH4 long-duration storage (traditional underground gas storage)
- With the reduced requirement for CH4 in the buildings sector (predominantly for heat load) less inter-seasonal storage capacity will be required in NZ 2050
- CH4 storage volume needed to move energy from summer to winter season will reduced by a factor of 4 (from the existing storage volume of 1,117 TWh to 272.7 TWh in NZ 2050)

TEMPORAL FLEXIBILITY REQUIREMENTS IN NZ – intraday flexibility

cerre

When it comes to **intraday flexibility** in our NZ energy system, it is delivered by a combination of:

- electrical energy storage: both traditional storage solutions like hydro-based electrical storage and generation, as well as new forms of intraday flexibility – V2G from EVs and electrical energy battery storage
- 2. from H2-based intraday storage solutions, like **pressurised H2 tanks** and **liquid H2 storage** technologies
- 3. And, **hybrid heat pumps** which allow for greater system flexibility associated with within day ramping requirements to meet heat loads

While there are 99 GW of hydro pumped and electrical energy storage systems, intraday electricity flexibility could be provided by some EVs:

- 1. In NZ there are **268 million EVs**, of which 75%, are private passenger cars
- 2. we see **120 GWh of peak V2G** output from passenger EVs, or 1.4% of total EV battery capacity

THE DIFFERENCE NZ MAKES

We actually model 3 other scenarios, one of which is a 90% emissions reduction Scenario, also in the EU modelling. This illustrates the effect of pushing on to NZ.

	NZ SCENARIO		90% SCENARIO		
	FINAL Consumption	SHARES IN Total	FINAL Consumption	SHARES IN Total	
<u>Biomethane</u>	1,059	13%	1,040	12%	
E-gas	611	7%	647	8%	
Electricity	4,175	51%	4.093	49%	
Hydrogen	921	11%	210	3%	
Natural gas	199	2%	323	4%	
Gasoline	45	1%	305	4%	
Diesel	290	4%	661	8%	
Biomass	517	6%	508	6%	
E-liquids	429	5%	582	7%	
Total	8,246	100%	8,369	100%	

Table 18: Final Energy Consumption (TWh) in NZ and 90% Scenario

EMISSIONS DIFFERENCES IN NZ

හු

TABLE 22

GHG EMISSIONS BALANCE IN THE NZ AND 90% SCENARIOS, MTCO2E

		NET ZERO	90% SCENARIO
[1]	Stock Change	-406,2	-100,3
[1,1]	Underground storage: non neutral emissions	-153.5	-79,6
[1.2]	Underground storage: negative emissions	-252.7	-20.7
[2]	Transformation	612,0	457.4
[2.1]	Gas-fired electricity generation	19.44	21.76
[2.2]	Hydrogen production from natural gas CCS	144.75	83.77
[2.3]	Bioenergy electricity generation	0	15.44
[2.4]	Bioenergy electricity generation CCS	447.84	336.44
[3]	CO ₂ utilization	-229,4	-276,3
[3.1]	Synthetic methane production	-121.76	-146.01
[3.2]	Synthetic liquids production	-107.70	-130.30
[4]	Final Consumption	510,9	822,1
[4.1]	Buildings	173.5	171.1
[4.2]	Industry	109.8	175.6
[4.3]	Transport Cars	79.8	76.2
[4.4]	Transport Public	0.0	0.0
[4.5]	Transport HGV	69.3	255.8
[4.6]	Transport Other	78.5	143.5
[5]	CO ₂ neutral emissions	-518,0	-427,2
[6]	LULUCF CO ₂ emissions	-306,6	-240,5
[7]	Non CO ₂ GHG emissions	337,4	337,4
[8]	TOTAL 2050 (this research)	0	572,7
[9]	TOTAL 2050 (EC LTS)	26,1	620,1
[10]	TOTAL 1990*	5,40	08,8

Table 22: GHG emissions balance in the NZ and 90% Scenarios, mtCO2e

Notes: [8]=[1]+[2]+[3]+[4]+[5]+[6]+[7]; * Total CO2e, including indirect CO2,

with land use, land-use change and forestry; Stock Change means CO2 storage;

CO2 neutral emissions are emissions from combustion of bioenergy; non CO2

GHG emissions are primarily methane, nitrous oxide and fluorinated gases.

ELECTRICITY UNDER DIFFERENT ASSUMPTIONS

We then flex NZ scenario to give two new extreme scenarios (NZ-e, NZ-g) essentially doubling or halving cost assumptions in order to favour gas or electricity, e.g. cheaper wind vs cheaper methane.

	NZ SCENARIO		NZ-E SCENARIO		NZ-G SCENARIO	
	GENERATION	SHARES IN Total	GENERATION	SHARES IN Total	GENERATION	SHARES IN Total
CCGT	60	1%	0	0%	231	6%
Hydro	189	3%	94	1%	274	7%
Nuclear	785	12%	763	9%	806	19%
Residential Solar PV	503	7%	523	6%	503	12%
Biomass	0	0%	0	0%	265	6%
Biomass CCS	401	6%	367	4%	754	18%
Tidal & Wave	24	0%	0	0%	36	1%
Utility Solar PV	822	12%	281	3%	251	6%
Wind Offshore	1,360	20%	2,180	26%	639	15%
Wind Onshore	2,672	39%	4,100	49%	413	10%
Geothermal	2	0%	1	0%	3	0%
Total	6,818	100%	8,309	100%	4,176	100%

cerre

Centre on Regulation in Europe Improving network and digital industries regulation

Avenue Louise, 475 (box 10) 1050 Brussels, Belgium

@ cerre.eu
@ CERRE_ThinkTank

🖂 info@cerre.eu

© Centre on Regulation in Europe a.s.b.l. (CERRE), 2021